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Assumed mode shapes are often used to determine the responses of a bridge deck under
the passage of moving loads. However, the use of these mode shapes in the inverse problem
of force identi"cation would lead to unnecessary errors due to their inherent inaccuracy.
Direct di!erentiation of the measured responses is usually used to obtain the velocities and
accelerations, and this practice leads to large errors when measurement noise is included.
This paper derives the analytical vibration mode shapes of a continuous beam on rigid
supports from the eigenvalue and eigenfunction analysis, thus eliminating the modelling
errors from the assumed mode shapes. A generalized orthogonal function approach is
proposed to obtain the derivatives of the bridge modal responses, and this eliminates the
errors due to measurement noise. The moving loads are identi"ed using the regularization
method on the equations of motion. Computational simulations and laboratory test results
show that the method is e!ective and accurate for identifying a group of moving loads.
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1. INTRODUCTION

Accurate estimation of dynamic loads acting on a structure is very important for the
structural design, control and diagnosis. The indirect load determination is of special
interest when the applied loads cannot be measured directly, while the responses can be
measured easily. It is an ill-posed inverse problem because the response typically is
a continuous vector function in the spatial co-ordinates, and it is de"ned at a few points of
the structure only. Therefore, solutions to the problem are frequently found unstable in the
sense that small changes in the responses would result in large changes in the calculated
load magnitudes. Lee and Park [1] have analyzed the characteristics of the force
determination error in a structural dynamic system, and they proposed a regularization
procedure to reduce the error. Tikhonov's regularization method was used by Busby and
Trujillo [2] in a modal-based load identi"cation. In a more recent work, Busby and Trujillo
[3] used a "rst order regularization, where the penalty is in terms of the derivative of the
force rather than the force itself, and the regularization parameter is determined by the
L-curved method [4] and the generalized cross-validation method [5]. Later, a time
domain method was presented for estimating the discrete input forces acting on a structure
based on the system Markov parameters [6]. The regularization technique was employed to
stabilize the computation.

This paper aims at exploring the theory of the moving load identi"cation without
knowledge of the load system characteristics in the time domain. O'Connor and Chan [7]
modelled a bridge as an assembly of lumped masses interconnected by a massless elastic
022-460X/01/320329#17 $35.00/0 ( 2001 Academic Press
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beam element to interpret time-varying moving forces from the equations of motion of the
system. Chan et al. [8] modelled the bridge as a Euler}Bernoulli beam to form the
equations of motion under a set of independent moving forces. Law et al. [9] assumed the
force to be a step function in a small time interval to relate the bending moment and
acceleration of the beam with the time-varying forces, and the equations of motion were
solved in the time domain. Later Law et al. [10] performed a Fourier transformation on the
independent equations of motion of the system that is obtained through modal co-ordinate
transformation. Exact solution on the time history of the forces is obtained by performing
the inverse Fourier transformation. Zhu and Law [11] investigated the dynamic behavior of
a multi-span continuous bridge with a non-uniform cross-section under moving loads using
the assumed mode method. The intermediate supports are assumed to have large sti!nesses,
and a damped least-squares method was presented to identify the moving loads. The use of
assumed mode shapes and the assumption of large sti!ness at the intermediate support in
the last reference would lead to errors in the identi"ed forces. Lin [12] has mentioned that
the selection of support sti!ness is problem dependent, and it should be used with care if
numerical stability in the solution has to be maintained.

This paper eliminates the modelling error from the assumed mode shapes by using an
exact solution on the mode shapes. Rigid intermediate supports are allowed for in
a continuous bridge. A generalized orthogonal function approach is proposed to obtain the
derivatives of the bridge modal responses from the strain measurements instead of direct
di!erentiation [8, 11]. This would reduce the error due to measurement noise. The accuracy
of the identi"ed moving loads on the bridge is improved using the regularization method on
the modal co-ordinate equations of motion of the bridge in the time domain. Moving forces
on a single-span beam, on a two-span beam, and the axle interaction forces from
a four-DOFs vehicle on a triple-span bridge are studied in the simulation. Laboratory
study is also conducted on a single-span beam. Computational simulations and laboratory
test results show that the method is e!ective and accurate for identifying a set of moving
loads.

2. MOVING LOADS IDENTIFICATION THEORY

2.1. EQUATION OF MOTION

A continuous uniform Euler}Bernoulli beam subjected to a set of moving forces P
l

(l"1, 2,
2

,N
p
) is shown in Figure 1. The forces are assumed to be moving as a group at

a prescribed velocity v(t) along the axial direction of the beam from left to right. Assuming
the forces as step functions in a small time interval, the equation of motion of the beam can
be written as
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where A is the cross-sectional area; E is the Young's modulus, I the moment of inertia of the
beam cross-section, c the damping of the beam, w (x, t) the transverse displacement function
of the beam, xL

l
(t) the location of moving force P

l
(t) at time t, and d(t) the Dirac delta

function. Express the transverse displacement w(x, t) in modal co-ordinates as
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Figure 1. A continuous beam subjected to moving forces.

Figure 2. An R-span continuous beam.
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where /
i
(x) is the mode shape function of the ith mode, which is determined from the

eigenvalue and eigenfunction analysis proposed by Hayashikawa and Watanabe [13] as
shown below; q

i
(t) is the ith modal amplitude. Substituting equation (2) into equation (1),

and multiplying by /
i
(x), integrating with respect to x between 0 and ¸, and applying the

orthogonality conditions, we obtain
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where u
i
, m

i
, M

i
are the modal frequency, the damping ratio and the modal mass of the ith

mode, and

M
i
"P

L

0

oA(x)/2
i
(x) dx. (4)

2.2. EIGENVALUE AND EIGENFUNCTION OF A CONTINUOUS BEAM

The eigenfunction of an R span Euler}Bernoulli continuous beam as shown in Figure 2
can be written in the following form:
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(i"1, 2,2,R), (5)

where r
i
(x

i
) is the eigenfunction for the ith span, and b is the eigenvalue. Hayashikawa and

Watanabe [13] have presented the formulation of the eigenfunction with arbitrary
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boundary conditions. The same problem is solved for a multi-span continuous beam by the
authors, and the boundary conditions are listed as follows:
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Substituting the boundary conditions into equation (5), the mode shape of the continuous
beam can be written as
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where parameters b, A
1
, A

i
, B

i
(i"2, 3,2,R!1), A

R
are determined from equation (7) by

solving the following set of equations [14]:
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The elements in matrix F are given by
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and the other coe$cients f
ij

equal to zero.

2.3. GENERALIZED ORTHOGONAL FUNCTION EXPANSION

The strain in the beam at a point x and time t can be written as

e (x, t)"!h
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, (8)

where h is the distance between the lower surface and the neutral plane of bending of the
beam. Substituting equation (2) into equation (8) and assuming there are N modes in the
responses, we have
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The strain can be approximated by a generalized orthogonal function ¹(t) as
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where M¹
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and it can be obtained from equation (6).

2.4. REGULARIZATION

The vector of generalized co-ordinates obtained from equation (13) can be substituted
into equation (3), and rewritten it in a matrix form to become
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The required QG and Q0 can be obtained by directly di!erentiating equation (13) to have

QG "(UTU)~1UTCTG ,

Q0 "(UTU)~1UTCT0 .

The moving forces obtained from equation (14) using a straightforward least-squares
solution would be unbound. Let the left-hand side of equation (14) be represented by U.
A regularization technique can be used to solve the ill-posed problem in the form of
minimizing the function

J(P, j)"EBP!UE2#jEPE2, (15)

where j is the non-negative regularization parameter.

2.5. OPTIMAL REGULARIZATION PARAMETER

The success of solving equation (15) lies in how to determine the regularization parameter
j. Two methods are used in this paper. If the true forces are known, the parameter can be
determined by minimizing the error between the true forces and the predicting values as

S"EP<!PE. (16)

In the real case when the true forces are not known, the method of generalized
cross-validation (GCV) is used to determine the optimal regularization parameter. The
GCV function to be minimized in this work is de"ned by [5]

g (j)"
EBP<!UE2

2
Mtrace[I!B ((BTB#jI)~1BT)~1]N2

, (17)

where P< is the vector of estimated forces.

3. NUMERICAL EXAMPLES

3.1.MOVING FORCES

The proposed method is illustrated in the following simulation studies. The e!ect of
discarding some of the information contained in the measured responses on the
identi"cation errors is studied. This aspect has not been studied in previous works reported
by the authors or by other researchers.

3.1.1. Single-span beam

A single span simply supported beam is studied with two varying forces moving on top at
a constant spacing of 4)27 m.

f
1
(t)"9)9152]104[1#0)1 sin(10nt)#0)05 sin(40nt)] N,

(18)
f
2
(t)"9)9152]104[1!0)1 sin(10nt)#0)05 sin(50nt)] N.

The parameters of the beam are as follows: EI"2)5]1010 Nm2, oA"5000 kg/m,
¸"30 m, h"1 m. The "rst eight natural frequencies of the beam are 3)9, 15)61, 35)13,



TABLE 1

Identixed errors for single-span beam

Noise level

1% 5% 10%

Number of First Second First Second First Second
mode shapes force force force force force force

2 31)51 31)53 45)11 45)05 174)27 112)50
3 11)56 12)00 13)04 13)24 16)31 16)08
4 6)78 6)18 7)05 6)95 8)47 8)69
5 5)16 3)62 5)07 3)89 5)46 4)80
6 3)90 3)10 4)02 3)28 4)14 3)66
7 3)43 2)99 3)45 3)13 3)66 3)44
8 3)15 2)86 3)19 3)01 3)42 3)29
9 9)52 8)96 9)48 8)94 9)48 8)94

10 18)02 17)30 18)51 17)99 18)42 17)88
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62)48, 97)58, 140)51, 191)25 and 249)8 Hz, and they are used in the computation of the
analytical mode shapes from equation (6). The forces are moving at a speed of 30 m/s.
Random noise is added to the calculated strains to simulate the polluted measurement and
1, 5 and 10% noise levels are studied with

e"e
calculated

#Ep )N
iose

)var(e
calculated

) (19)

where e is the vector of strains; Ep is the noise level; N
iose

is a standard normal distribution
vector with zero mean and unit standard deviation; e

calculated
is the vector of calculated

strains; var(e
calculated

) is the standard deviation of e
calculated

. The errors in the identi"ed forces
are calculated as

Error"
EP<!P

True
E

EP
True

E
]100%. (20)

Table 1 shows the errors of identi"cation from the use of di!erent number of mode shapes
in the identi"cation. The time step is 0)001 s in the calculation. The strain consists of
responses from the "rst eight mode shapes polluted with 5% noise level. Ten measuring
points are available in the identi"cation and they are evenly distributed along the beam
length. The di!erent combinations of number of mode shapes used in the identi"cation and
the number of measuring points are studied. Figure 3 shows the identi"ed results using three
and six mode shapes. The following observations are obtained.

(1) Results in Table 1 show that the errors in the identi"ed forces are insensitive to the
noise level in the responses. This is because orthogonal functions have been used to
approximate the strains in the identi"cation, and this approximation suppresses the
errors due to high-frequency measurement noise.

(2) When the number of mode shapes used in the identi"cation is the same as the number
of mode shapes in the responses, i.e. eight mode shapes, the identi"ed errors are the
smallest. The errors in identi"cation become large when the number of mode shapes
used in the identi"cation is either larger or smaller than the number of mode shapes
in the responses. This indicates that the pairing of the number of mode shapes in both



Figure 3. The identi"ed results with di!erent number of mode shapes: **, (a) The "rst axle force, (b) The
second axle force. true loads; } } } }, identi"ed results with three modes; ) ) ) ) ) , identi"ed results with six modes.
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the responses and the identi"ed forces has a large e!ect on the errors in the
identi"cation. The correct pairing can be determined from an inspection of
the frequency content in the measured responses.

(3) Figure 3 shows that there are large discrepancies in the identi"ed forces near the
beginning and the end of the moving forces when only three modes are used in
the identi"cation. These discrepancies are much less when six modes are used. This is
because of the sudden appearance and disappearance of the forces at these points
which can be represented by an equivalent impulse force. These impulsive forces
excite the beam with a broadband vibration that covers a large number of modal
frequencies. Therefore, more mode shapes should be used in the identi"cation to take
advantage of the information of the forces at higher modal frequencies in the
responses at the beginning and the end of the time histories.

3.1.2. ¹wo-span-continuous beam

Table 2 shows the errors in the identi"ed moving forces on a two-span continuous beam
with di!erent number of mode shapes and number of measuring points. The parameters of
the beam are the same as for the single-span beam except each span measures 30 m long.
The "rst eight natural frequencies of the beam are 3)9, 6)1, 15)61, 19)75, 35)12, 41)22, 62)43
and 70)48 Hz. Figure 4 shows the identi"ed forces from using strains polluted with 5% noise
level at six measuring points. Inspection of the results in Table 2 and Figure 4 gives the
following observations:



TABLE 2

Identi,ed errors for two-span beam

Noise level

1% 5% 10%

No. of mode shapes No. of mode shapes No. of measuring First Second First Second First Second
in responses N

1
in identi"cation N

2
points N

s
force force force force force force

10 10 14 7)85 9)07 18)48 19)44 27)64 28)99
10 10 10 7)78 8)98 16)67 17)98 26)28 27)42
10 9 10 8)90 10)61 15)95 17)23 24)24 25)12
10 8 10 11)54 13)71 23)05 24)12 31)37 32)59
10 7 10 13)81 16)19 17)02 19)01 21)99 23)70
10 6 10 17)05 19)55 20)76 22)99 26)61 28)54

6 6 6 15)99 18)15 20)15 21)91 26)26 27)78
6 6 8 16)06 18)21 20)93 22)69 27)74 29)24
6 6 10 15)98 18)15 19)98 21)77 26)11 27)69
6 6 12 15)90 18)08 18)90 20)73 24)02 25)65
6 6 14 15)85 18)04 18)19 20)06 22)47 24)14
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Figure 4. The identi"ed results with di!erent number of mode shapes: (a) The "rst axle force. (b) The second
axle force. **, true loads; } } } }, identi"ed results with three modes; ) ) ) ) ) , identi"ed results with six modes.
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(1) Results in Table 2 show that the errors increase as the noise level in the response
increases. The errors are more than twice of that under similar conditions for the
single-span beam. Therefore, moving load identi"cation in a multi-span beam would
be less accurate than that in a single-span beam.

(2) When the number of mode shapes used in the identi"cation equals to that in the
responses as shown in the "rst two rows and the lower part of Table 2, the errors in
the identi"ed forces vary only slightly with more measuring points. The number of the
measuring points is best selected to be equal to the number of mode shapes.

(3) Results from the upper part of Table 2 also show that the errors would be smallest
when the number of mode shapes in the identi"cation is the same as that in the
responses. This con"rms the observation made in the case of the single-span beam.

(4) The identi"ed forces in Figure 4 have large #uctuations close to zero at the point of
the intermediate support at 1)0 s. This is again due to the presence of the equivalent
impulsive force with the sudden appearance or disappearance of the forces at this
point.

3.2. BRIDGE}VEHICLE INTERACTION FORCES

Figure 5 shows a vehicle system with 4-d.o.f.s with damping included [15]. The axle
spacing is 4)27 m. The vehicle is simulated as moving on top of an unequal three-span
uniform bridge deck at a velocity of 30 m/s. The parameters and natural frequencies of the
bridge and vehicle are shown in Table 3. The bridge responses and the interaction forces are



Figure 5. A bridge}vehicle system.

TABLE 3

Parameters of the three-span bridge and the 4-d.o.f.s vehicle

Parameters of the three-span bridge Parameters of the vehicle (Mulcahy, 1983)

¸
1
"¸

3
"30m, ¸

2
"50 m M

v
"17 735 kg,m

1
"1500 kg,m

2
"1000 kg

o"5)0]103 kg/m I
v
"1)47]105 kgm2

EI"2)5]1010 Nm2 k
s1
"2)47]106Nm~1, k

s2
"4)23]106N/m

I"1)8]105 kg/m2 k
t1
"3)74]106N m~1, k

t2
"4)60]106 N/m

m"2% c
s1
"30 000 N s/m; c

s2
"40 000 N s/m

Natural Frequencies (Hz)
c
t1
"3900 Ns/m; c

t2
"4300N s/m

2)07, 4)44, 5)21, 7)69, 13)82, 17)24,
a
1
"0)519; a

2
"0)481; H"1)80

18)82, 25)63, 35)12, 38)18, 41)84, 54)23
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calculated by the method proposed by Henchi et al. [16]. The time step in the calculation is
0)005 s. The road surface roughness of the bridge is not included in the simulation. The
measuring points are evenly distributed along each span. The identi"ed axle loads from the
following two cases using di!erent number of modes and measuring points are shown in
Figure 6. The number of mode shapes in the identi"cation is taken to be equal to that in the
measured responses.

Case 1: The "rst six modes and eight measuring points are used in the identi"cation.
There are two measuring points spaced at one-third span on the "rst span and the third
span, and four measuring points spaced at one-"fth span on the second span.

Case 2: The "rst 12 modes and 14 measuring points are used in the identi"cation. There
are four measuring points spaced at one-"fth span on the "rst span and the third span, and
six measuring points spaced at one-seventh span on the second span.

1% noise is included in the responses. Figure 6 shows that the identi"ed results are close
to the calculated interaction forces except near the supports, and Case (2) gives more
accurate results than Case (1) particularly at locations close to the supports. Therefore, the
proposed method is also e!ective for identifying the bridge}vehicle interaction forces.

Comparison with previous published results shows that the identi"ed forces at the
supports are discontinuous in this work while those from Zhu and Law [11] are
continuous. This is because the large sti!ness support assumption in the latter case enables



Figure 6. The identi"ed results with di!erent modes and measuring points: (a) The "rst axle force. (b) The
second axle force. **, calculated interaction forces; ) ) ) ) ) , identi"ed results with six modes and eight measuring
points; } } } }, identi"ed with 12 modes and 14 points.
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small continuous responses of the beam when the force is over the support, while those of
the beam in the present case equal to zero when the force is over the support.

4. EXPERIMENT

4.1. EXPERIMENTAL SETUP AND MEASUREMENTS

The experimental setup is shown diagrammatically in Figure 7. The main beam, 3678 mm
long with a 100 mm]25 mm uniform cross-section, is simply supported. There is a leading
beam for accelerating the vehicle and a tailing beam to accept the vehicle when it comes out
of the main beam. A U-shaped aluminum section is glued to the upper surface of the beams
as a direction guide for the car. The model car is pulled along the guide by a string wound
around the drive wheel of an electric motor. Thirteen photoelectric sensors are mounted on
the beams to measure and monitor the moving speed of the car. Six strain gauges are evenly
located on the beam to measure the bending moment responses of the beam. A TEAC
11-channels magnetic tape recorder and an 8-channel dynamic testing and analysis system
are used for data collection and analysis in the experiment. The sampling frequency is
2000 Hz. The recorded length of each test lasts for 6 s. The model car has two axles at
a spacing of 0)557 m and it runs on four steel wheels with rubber band on the outside. The
mass of the whole car is 16)6 kg with 9)8 and 6)8 kg as the "rst and second static axle forces
respectively.



Figure 7. Diagrammatic illustration of the experimental setup.

TABLE 4

¹he correlation coe.cients between measured and reconstructed responses at 5/8¸

Number of Correlation
Case mode shapes Measuring locations coe$cient

A 3 1/4¸, 1/2¸, 3/4¸, 0)9809
B 4 1/8¸, 1/4¸, 1/2¸, 3/4¸ 0)9470
C 5 1/8¸, 1/4¸, 1/2¸, 3/4¸, 7/8¸ 0)9752
D 3 1/8¸, 1/4¸, 3/8¸, 1/2¸, 3/4¸, 7/8¸ 0)9853
E 4 1/8¸, 1/4¸, 3/8¸, 1/2¸, 3/4¸, 7/8¸ 0)9837
F 5 1/8¸, 1/4¸, 3/8¸, 1/2¸, 3/4¸, 7/8¸ 0)9822
G 6 1/8¸, 1/4¸, 3/8¸, 1/2¸, 3/4¸, 7/8¸ 0)9716
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4.2. FORCE IDENTIFICATION

Strains at 1/8¸, 1/4¸, 3/8¸, 1/2¸, 3/4¸, 7/8¸ are used in the identi"cation. Table 4 shows
the correlation coe$cients between the measured and the reconstructed strains at 5/8¸
from the identi"ed forces with di!erent number of mode shapes in the identi"cation. The
number of measuring points and the number of mode shapes are shown in Table 4. Figure 8
shows the identi"ed forces from Cases (A) and (G) of the study using three and six sensors
respectively. The combined force is also presented in Figure 8(c). The following observations
are made.

(1) Table 4 shows that the correlation coe$cients are all larger than 0)9 for di!erent
combinations of modes and measuring points. It shows that the proposed method is
e!ective to identify the moving forces in practice.



Figure 8. Identi"ed results from using di!erent modes. (a) The "rst axle force. (b) The second axle force. (c) The
resultant force. **, static load; } } } }, with three modes (Case A); ) ) ) ) ), with six modes (Case G).
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(2) There is a low-frequency component in the identi"ed individual forces in Figure 8.
This is the pitching motion of the moving car.

(3) The identi"ed forces from using six modes are closer to the static forces at the
beginning and the end of the time histories than that obtained from using three
modes. This gives experimental evidence of the fact that more mode shapes in the
computation should be used to identify the moving forces near these locations.

5. CONCLUSIONS

This paper presents several improvements on the accuracy of moving force identi"cation.
An improved formulation on the analytical vibration mode shapes of a continuous beam on
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rigid supports is presented, and these mode shapes are used instead of the assumed mode
shapes in the inverse problem of moving force identi"cation. A generalized orthogonal
function approach is proposed to obtain the modal velocity and acceleration from
measured strain response. This reduces the error due to measurement noise. The moving
forces are identi"ed with bounds in the errors using regularization method in the solution.
Observations on the computation simulations and experimental test results provide
evidence to the following conclusions.

(1) The proposed moving force identi"cation method is e!ective for identifying the
moving loads from measured strains in a multi-span bridge in time domain.

(2) The proposed method can be used to identify the bridge}vehicle interaction forces
from measured strains in a continuous beam, and acceptable results can be obtained.

(3) More mode shapes should be used to identify the moving forces at locations close to
the supports.

(4) When the number of mode shapes in the identi"cation is the same as that in the
measured responses, the errors of identi"cation will be the smallest.
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APPENDIX A: NOMENCLATURE

The following symbols are used in this paper.

h distance between the lower surface to the neutral plane of bending
C

d
damping coe$cient of the beam

w(x, t) transverse displacement of the beam
e(x, t) strains in the beam
o mass density of material
P
i
(t) the ith moving load

xL
i
(t) location of the ith moving load

N
p

number of moving loads
N

f
number of terms in the orthogonal function

N
s

number of measuring points
N number of mode shapes used
q
i
(t) ith modal coordinate

u
i

ith circular frequency in radians per second
M, K, C mass, sti!ness, and damping matrices
P< vector of estimated forces
Q vector of modal co-ordinates
u(x) mode shape of the continuous beam
d(x) Dirac function
j regularization parameter
b, r

1
eigenvalue and eigenfunction of the continuous beam

k
t1
, k

t2
sti!ness of tyres

c
t1
, c

t2
damping in tyres

k
s1

, k
s2

sti!ness of axle assemblies
c
s1

, c
s2

damping of axle assemblies
m

v
mass of car body

I
v

torsional moment of inertia of car body
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